
ADEPT PA FORM REVISON DATE: 2/15/2013 REVISION: A

AEROSPACE DATA EXCHANGE PROGRAM TRANSMITTAL

PROBLEM ADVISORY
1. TITLE

UT699LEON3FT, Missing Nullify of Bus Access for
Instruction Following Restarted Single-Cycle
LOAD Instruction – REVISED from previous

2. DOCUMENT NUMBER

SPO-2014-PA-0006 (SUPERSEDES SPO-2013-PA-0003)

3. DATE (Year, Month, Date)
2013, September, 15

4. MANUFACTURER NAME AND ADDRESS

CAES
4350 CENTENNIAL BOULEVARD

COLORADO SPRINGS, COLORADO 80907-3486

5. MANUFACTURER POINT OF CONTACT NAME

Peter Pohlenz
6. MANUFACTURER POINT OF CONTACT TELEPHONE

(719) 594-8000
7. MANUFACTURER POINT OF CONTACT EMAIL

Peter.Pohlenz@cobhamaes.com
8. CAGE CODE

65342
9. LDC START

All
10. LDC END

All
11. PRODUCT IDENTIFICATION CODE

WG07A
12. BASE PART

UT699
13. BLANK 14. SMD NUMBER

5962-08228
15. DEVICE TYPE DESIGNATOR

ALL
16. RHA LEVELS

ALL
17. QML LEVEL

ALL
18. NON QML LEVEL

ALL
19. BLANK

20. PROBLEM DESCRIPTION / DISCUSSION / EFFECT

This document discusses an errata in GRLIB IP (rev. 1.0.22-b4080 and previous) based devices, when the processor’s
integer unit is implemented with register file protection and a data tag parity error is detected.

Refer to SHEET 2 for list of affected parts.

The anomaly presents itself in the LEON3FT integer pipeline data cache. Normally, detected parity errors in cache are
handled by invalidating the bad cache line and restarting the instruction to fetch the correct data from memory. This
errata is triggered in the event that a parity error occurs in the tag part of the data cache RAM and that parity error
occurred in either a load instruction that is followed by another memory access instruction or an atomic instruction. In
this event the access following the load instruction, or following the write part of an atomic instruction, will be performed
on the AMBA bus prior to restarting, with unpredictable side effects.

The only known activation mechanisms for this anomaly are SEU due to radiation and forced error injection via
diagnostic interface.

21. ACTION TAKEN / PLANNED

1. Create an errata to describe the workaround and mitigation methods to handle the error.
(Complete – LEON3FT Data Cache Nullify Errata i1r4 – appended to this Problem Advisory,

please contact support@gaisler.com for updates to errata)
2. Add a compiler switch that inserts a NOP command after single cycle load instructions.

(Complete – Reference Errata Work-arounds in section 2.0 of the appended errata)
3. The errata will be corrected in the next LEON3FT (Vendor Generic P.N. UT699E / SMD 5962-13237).

(Prototypes available NOW / QML target availability 3QCY14) The revised UT699E is only offered in a 484
Ceramic Land Grid Array, Ceramic Ball Grid Array and Ceramic Column Grid Array

22. DISPOSITIONARY RECOMMENDATION:
CHECK & ☐
USE AS IS

CONTACT ☐
MANUFACTURER

REMOVE & ☐
REPLACE

CORRECT & ☒
USE AS SPECIFIED

23. ADEPT REPRESENTATIVE

Timothy L. Meade

24. SIGNATURE 25. DATE

September 15, 2014

mailto:Peter.Pohlenz@aeroflex.com
mailto:support@gaisler.com

ADEPT PA FORM REVISON DATE: 2/15/2013 REVISION: A

SHEET 2

Affected Parts
UT699-ZPC 5962F0822801QXC
UT699-SPA 5962R0822801QXC
UT699-CPA 5962F0822802QXC
UT699-XPC 5962R0822802QXC
UT699-XEC 5962F0822801VXC
UT699-ZEC 5962R0822801VXC
UT699-SEA 5962F0822801QYC
UT699-CEA 5962R0822801QYC

5962F0822802QYC
5962R0822802QYC
5962F0822801VYC
5962R0822801VYC
5962F0822801QZA
5962R0822801QZA
5962F0822802QZA
5962R0822802QZA
5962F0822801VZA
5962R0822801VZA
5962R0822803QXC
5962R0822803QYC
5962R0822803QZA
5962R0822803VXC
5962R0822803VYC
5962R0822803VZA

Doc. No.:

Issue:

LEON3FT-DC-Nullify-Errata

1 Rev.: 4

Date: 2013-07-18 Page: 1 of 6

© CAES Gaisler AB

LEON3FT Errata

Missing Nullify of Bus Access for Instruction
Following Restarted Single-Cycle Load

Doc. No.:

Issue:

LEON3FT-DC-Nullify-Errata

1 Rev.: 4

Date: 2013-07-18 Page: 2 of 6

© CAES Gaisler AB

TABLE OF CONTENTS

1 INTRODUCTION.. 3

1.1 Scope of the Document.. 3

1.2 Distribution.. 3

1.3 Contact... 3

2 LEON3FT DATA CACHE NULLIFY ERRATA.. 4

2.1 Affected versions.. 4

2.2 Description.. 4

2.3 Workaround / Mitigation.. 5

2.4 Toolchain versions with workaround... 6

2.5 FAQ.. 6
2.5.1 For the SWAP and LDSTUB instructions, which are affected by this bug, is there a

workaround?.. 6
2.5.2 In what order do the additional AHB accesses occur?..6
2.5.3 For which types of parity error do the errata occur?... 6
2.5.4 What happens if the tag of the data targeted is correct, but if another tag in the same set

has a parity error?... 6
2.5.5 Is the use of forced cache miss for the load instruction a workaround?................... 6
2.5.6 Are the floating-point load/store instructions affected by the errata?.......................6

Doc. No.:

Issue:

LEON3FT-DC-Nullify-Errata

1 Rev.: 4

Date: 2013-07-18 Page: 3 of 6

© CAES Gaisler AB

1 INTRODUCTION

1.1 Scope of the Document

This document describes errata present in the LEON3FT integer pipeline and data cache where a cache
tag RAM parity error that leads to an instruction restart may cause AMBA accesses for a directly
following load or store operation to be performed before the first load operation is restarted.

The errata affects specific versions of the LEON3FT processor and requires that the implemented
register file protection is 4-bit checksum per 32-bit word, or 7-bit BCH checksum per 32-bit word, with
pipeline restart on correction.

1.2 Distribution

LEON3FT users that have devices with the affected errata are free to use the material in this document in
their own errata sheets. Please contact CAES Gaisler for inquires on other distribution.

1.3 Contact

For questions on this errata, please contact CAES Gaisler support at support@gaisler.com. When
requesting support include the part name if the question is a specific device or the full GRLIB IP library
package name if the question relates to a GRLIB IP library license.

mailto:support@gaisler.com

Doc. No.:

Issue:

LEON3FT-DC-Nullify-Errata

1 Rev.: 4

Date: 2013-07-18 Page: 4 of 6

2 LEON3FT DATA CACHE NULLIFY ERRATA

2.1 Affected versions

The errata is present LEON3FT versions prior to 1.0.22-b4080 when the processor's integer unit is
implemented with register file protection that triggers an instruction restart on detected parity error
(register file protection is 4-bit checksum per 32-bit word, or 7-bit BCH checksum per 32-bit word, with
pipeline restart on correction).

2.2 Description

When a load operation encounters a data tag parity error 1 and the instruction corresponding to the load
operation is directly followed by a load or a store instruction, then the data access from the following
load/store may appear twice on the AHB bus (the instruction is only executed once in the pipeline, the
AMBA access for the second instruction is not correctly nullified before the restart).

The additional AHB access(es) occur because the data tag parity error is detected after that the access
has reached the AHB bus. If the access is destructive (to/from a FIFO or control register, or a store
access to the same memory location as the source address for the restarted load instruction), this can
cause undesired side-effects and data loss.

The errata also affects SWAP and LDST data instructions that encounter data tag errors where the write
of the SWAP/LDST instruction will be performed before the load operation is restarted.

Table 1 below lists the effects on different instructions when they are in the instruction stream directly
after a single cycle load instruction (instruction sequence: ld; instruction from table).

Instruction Number of extra bus cycles

LDB/LDH/LD one read cycle will appear on AHB

LDD a two-cycle read burst will appear on AHB

STB/STH/ST one write cycle will appear on AHB

STD no store cycle will appear

SWAP/LDST one read cycle will appear on AHB, no store

Table 1: Extra bus cycles for instruction following LD that encounters parity error

Table 1 lists the effects of a SWAP/LDST instruction when that instruction follows a single-cycle load
instruction that encounters the data tag parity error. If the SWAP/LDST is the instruction that encounters
the data tag parity error then the instruction will fail. The instruction will be restarted but the write
operation of the SWAP/LDST will be performed before instruction restart and corrupt the memory
location and read result.

If a store instruction encounters the tag parity error, a following load/store will not appear on the AHB bus
before the first store instruction is restarted.

1Note that LEON3FT implementations, implemented from the affected versions of the LEON3FT HDL description,
with a way size of 8 KiB or larger, and with three ways or more, a snoop hit to data stored in cache way two will
cause a tag parity error to be inserted. The tag is cleared on a snoop hit but the parity bits are incorrectly generated.

© CAES Gaisler AB

Doc. No.:

Issue:

LEON3FT-DC-Nullify-Errata

1 Rev.: 4

Date: 2013-07-18 Page: 5 of 6

2.3 Workaround / Mitigation

The errata described by this document requires cacheable single cycle load operations that are followed
by an instruction that performs a memory access that is destructive. The affected instructions can be
divided into two groups; LDST/SWAP instructions and sequences of LD; OPx where the OPx instruction
will cause a malfunction when the OPx memory access is executed before the LD or when the memory
access is performed twice.

The following workaround can be implemented in the compiler or by patching the compiler output:

• Always insert a NOP instruction after single-cycle load instructions.

• Do not use SWAP and LDSTUB instructions when data cache is enabled.

In case NOP insertion is unwanted, the following steps will prevent the errata from being triggered:

• Prevent destructive operations from being placed directly after single-cycle load operations to

cacheable locations. A destructive operation is a LD*, STB, STH, ST, SWAP or LDST instruction

that will cause a malfunction if executed before the load or if executed twice.

• Do not use SWAP and LDSTUB instructions when data cache is enabled.

A data tag parity error encountered during a LD; OPx, sequence (where OPx is LD*, STB, STH, ST) will
only lead to the OPx being performed twice if the OPx instruction is immediately following the LD
instruction in the processor pipeline. This is not always the case. If the OPx instruction has a data
dependency on the LD instruction so that the OPx instruction is held in the pipeline to allow the LD to
complete, then the OPx instruction will not cause any additional AMBA accesses. Assuming that there
are processor registers available, and that the memory location used for the load can handle burst
accesses, then LD; OPx sequences can be made immune from the errata by replacing the first LD with a
LDD.

There is no workaround for LDST/SWAP instructions apart from turning off the data cache.

Instruction sequences involving load/store operations can be placed into three categories:

• Unaffected:

◦ LD/LD*, LD/ST* sequences where the second instruction has a data dependency on the first

single-cycle load.

• Minimal impact – Extra bus operation occurs with no other impact on system state:

◦ LD operations followed by LD* or ST* to memory area where the additional load or store

operation does not alter the memory state and the ordering of the LD; OPx sequence is of no

importance.

• High implication – Needs workaround, can be fixed at compiler level

◦ Load operation, to cacheable area, followed by operation that is destructive (store operation

to same memory location, access to FIFO, sequence that requires that load/store order is

maintained)

• High implication – Need workaround, requires rewrite of software

◦ LDSTUB and SWAP instructions to cacheable areas. Must be removed from code or

executed with data cache disabled.

Toolchains distributed by CAES Gaisler that support the -mtune=ut699 switch will insert NOP
operations after single-cycle load starting with versions listed in section 2.4. Code with LDSTUB/SWAP
instructions must be modified to either remove the instructions or to disable the data cache while
executing LDSTUB/SWAP.

© CAES Gaisler AB

Doc. No.:

Issue:

LEON3FT-DC-Nullify-Errata

1 Rev.: 4

Date: 2013-07-18 Page: 6 of 6

2.4 Toolchain versions with workaround

The following toolchain versions, and later versions, generate code with one NOP inserted after single-
cycle load instructions when the -mtune=ut699 switch is used:

• RTEMS RCC 1.1.12

• Bare C Compiler (BCC) 1.0.43

• CAES Gaisler VxWorks toolchains: 1.0.10

2.5 FAQ

2.5.1 For the SWAP and LDSTUB instructions, which are affected by this bug, is there a
workaround?

No workaround is known for SWAP and LDSTUB instructions.

2.5.2 In what order do the additional AHB accesses occur?

Inst #1 may lead to a AHB access, followed by AHB access of inst #2. Inst #1 is then restarted due to the
detected error and leads to both inst #1 and #2 being executed again. This can result in instruction
sequences like:

Time PC Instruction
0 0x000000f0 ld [%l2], %o0 (restarted)
1 0x000000f0 ld [%l2], %o0
2 0x000000f4 st %i1, [%l2]

At time 0 both the LD and ST will be performed (in that order). Followed by the load (for which the value
is actually used, time 1) and then the store (time 2).

2.5.3 For which types of parity error do the errata occur?

Only data cache TAG errors will trigger the errata.

2.5.4 What happens if the tag of the data targeted is correct, but if another tag in the
same set has a parity error?

If a tag in the same set (at the same location in another cache way) has a parity error then the instruction
will be restarted and the errata can be triggered.

2.5.5 Is the use of forced cache miss for the load instruction a workaround?

No.

2.5.6 Are the floating-point load/store instructions affected by the errata?

No.

© CAES Gaisler AB

